No Free Lunch Theorem and Bayesian probability theory: two sides of the same coin. Some implications for black-box optimization and metaheuristics

نویسنده

  • Loris Serafino
چکیده

Challenging optimization problems, which elude acceptable solution via conventional calculus methods, arise commonly in different areas of industrial design and practice. Hard optimization problems are those who manifest the following behavior: a) high number of independent input variables; b) very complex or irregular multi-modal fitness; c) computational expensive fitness evaluation. This paper will focus on some theoretical issues that have strong implications for practice. I will stress how an interpretation of the No Free Lunch theorem leads naturally to a general Bayesian optimization framework. The choice of a prior over the space of functions is a critical and inevitable step in every black-box optimization. key words: No free lunch theorem, Metaheuristics, Bayesian optimization

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The No Free Lunch Theorems for Optimisation: An Overview

Many algorithms have been devised for tackling combinatorial optimisation problems (COPs). Traditional Operations Research (OR) techniques such as Branch and Bound and Cutting Planes Algorithms can, given enough time, guarantee an optimal solution as they explicitly exploit features of the optimisation function they are solving. Specialised heuristics exist for most COPs that also exploit featu...

متن کامل

Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Optimization with Randomized Search Heuristics: The (A)NFL Theorem, Realistic Scenarios, and Difficult Functions

The No Free Lunch (NFL) theorem due to Wolpert and Macready (1997) has led to controversial discussions on the usefulness of randomized search heuristics, in particular, evolutionary algorithms. Here a short and simple proof of the NFL theorem is given to show its elementary character. Moreover, the proof method leads to a generalization of the NFL theorem. Afterwards, realistic complexity theo...

متن کامل

Optimization with randomized search heuristics - the (A)NFL theorem, realistic scenarios, and difficult functions

The No Free Lunch (NFL) theorem due to Wolpert and Macready (1997) has led to controversial discussions on the usefulness of randomized search heuristics, in particular, evolutionary algorithms. Here a short and simple proof of the NFL theorem is given to show its elementary character. Moreover, the proof method leads to a generalization of the NFL theorem. Afterwards, realistic complexity theo...

متن کامل

Optimization with randomized search heuristics—the (A)NFL theorem, realistic scenarios, and di)cult functions

The No Free Lunch (NFL) theorem due to Wolpert and Macready (IEEE Trans. Evol. Comput. 1(1) (1997) 67) has led to controversial discussions on the usefulness of randomized search heuristics, in particular, evolutionary algorithms. Here a short and simple proof of the NFL theorem is given to show its elementary character. Moreover, the proof method leads to a generalization of the NFL theorem. A...

متن کامل

Information Perspective of Optimization

In this paper we relate information theory and Kolmogorov Complexity (KC) to optimization in the black box scenario. We define the set of all possible decisions an algorithm might make during a run, we associate a function with a probability distribution over this set and define accordingly its entropy. We show that the expected KC of the set (rather than the function) is a better measure of pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1311.6041  شماره 

صفحات  -

تاریخ انتشار 2013